Energy Storage Valuation and Analytics: Lessons, Methods, and Models Resulting from Recent Experience

Patrick Balducci, Chief Economist
Pacific Northwest National Laboratory
Arizona Tribal Energy Assoc. Annual Meeting
January 24, 2019

Support from DOE Office of Electricity Delivery & Energy Reliability
ENERGY STORAGE PROGRAM
RPS expansion requires balancing resources.

Legacy hydro cannot meet all our growing regional needs for service.

Energy Storage Critical for Flexible, Efficient Grid of the Future

Electric Power Grid

- **RTO/ISOs** Coordinates, controls and monitors transmission grid and wholesale market.
- **State Regulators** Regulation of vertically integrated utilities.
- **Energy Storage**
 - Bi-directionally capable of consuming and producing specific amounts of electric power as it is made available at specific times; e.g., batteries, flywheels, supercapacitors, pumped hydro, etc.
- **Electric Utilities** Monitor and operate distribution network.
- **Communities**
- **States/Territories**
- **Distributed Energy Resources**

Centralized Electricity Producers

Electricity Consumers

Legacy hydro cannot meet all our growing regional needs for service.
Energy Storage Demonstration Project Assessments as PNNL

PNNL Storage Analytics Program

- 26 MW
- 103 MWh at 14 Sites

PNNL Analytics Task-flow

- Preliminary Economic Analysis and Identification of Use Cases
- Baseline Testing to Evaluate Ratings etc.
- Use Case Testing and Analysis
- Final Techno-Economic Analysis

Decatur Island, WA: 0.5 MW / 2 MWh VFB
Glacier, WA: 2 MW / 4.4 MWh Li-ion
Pearl Hill, WA: 5 MW / 30 MWh PSH
Everett, WA: 2 MW / 1 MWh Li-ion
Pullman, WA: 1 MW / 3.2 MWh VFB
Richland, WA: 1 MW / 4 MWh VFB
Salem, OR: 5 MW / 1.25 MWh Li-ion
California ISO Territory: 5 MW / 30 MWh PSH
Nantucket Island, MA: 6 MW / 48 MWh Li-ion
New York ISO Territory: >5 MW / 30 MWh PSH
Northampton, MA: 5 MW / 5 MWh Li-ion; 386 MW Photovoltaics
Hawaii: 5 MW / 30 MWh PSH
Defining and Monetizing the Value of Energy Storage and DERs More Broadly

Key takeaways:

- We have developed a broad taxonomy and modeling approach for defining the value of distributed energy resources (DER)
- Economic value is highly dependent on siting and scaling of energy storage resources; many benefits accrue directly to customers
- Benefits differ based on utility structure (e.g., PUDs, co-ops, vertically integrated investor-owned utilities) and market participation
- Accurate characterization of battery performance, and development of real-time control strategies, are essential to maximizing value to the electric grid
Energy Arbitrage

• Hourly wholesale energy market used to determine peak / off-peak price differentials (e.g., Mid-C prices in Pacific NW or California Independent System Operator (ISO) LMPs in California)

• Value obtained by purchasing energy during low price hours and selling energy at high energy price hours – efficiency losses considered

• Energy time shift still generates value even in the absence of markets

• 85% efficiency => 117.6% price difference

• 65% efficiency => 153.8% price difference

Key Lesson: While one of the first recognized use cases for energy storage, arbitrage typically yields a small value.
Capacity / Resource Adequacy

- Capacity markets have been established in regions throughout the United States with value based on forward auction results and demonstrated asset performance.
- For regulated utilities, capacity value based on the incremental cost of next best alternative investment (e.g., peaking combustion turbine) with adjustments for:
 - energy and flexibility benefits of the alternative asset
 - the incremental capacity equivalent of energy storage, and
 - line losses
Frequency Regulation

- Second by second adjustment in output power to maintain grid frequency
- Follow automatic generation control (AGC) signal
- Value defined by market prices or avoiding costs of operating generators

Capacity Payment = Regulation Capacity Clearing Price
Service Payment = Mileage (AGC Signal Basis)
Performance = Regulation Service Performance Score

Mileage definition is the sum of all green bars in 15 min. intervals

Key Lesson: Performance of battery storage in providing frequency regulation is exceptionally high. Batteries represent an efficient resource for providing frequency regulation; however, market prices can be driven downward as a result, undermining the profit potential to storage operators in the process.
Outage Mitigation

• Outage data
 • Outage data obtained from utility for multiple years
 • Average annual number of outages determined and outages randomly selected and scaled to approximate average year
 • Outage start time and duration

• Customer and load information
 • Number of customers affected by each outage obtained from utility
 • Customer outages sorted into customer classes using utility data and assigned values
 • Load determined using 15-minute SCADA information

• Alternative scenarios
 • Perfect foreknowledge – energy storage charges up in advance of inclement weather
 • No foreknowledge – energy on-hand when outage occurs is used to reduce outage impact

<table>
<thead>
<tr>
<th>Duration</th>
<th>Residential</th>
<th>Small C + I</th>
<th>Large C + I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Momentary</td>
<td>$2</td>
<td>$210</td>
<td>$7,331</td>
</tr>
<tr>
<td>Less than 1 hr</td>
<td>$4</td>
<td>$738</td>
<td>$16,347</td>
</tr>
<tr>
<td>2-4 hours</td>
<td>$7</td>
<td>$3,236</td>
<td>$40,297</td>
</tr>
<tr>
<td>8-12 hours</td>
<td>$12</td>
<td>$3,996</td>
<td>$46,227</td>
</tr>
</tbody>
</table>

Transmission and Distribution Deferral

- Energy storage used to defer investment; impact of deferment measured in present value (PV) terms
- Net present value of deferring a $1 million investment for one year estimated at $90,000 or $10,400 annually over economic life of battery

\[PV = \frac{FV}{1+i^n} \]

\(PV \) = Present value
\(FV \) = Future value
\(i \) = Cost of capital
\(n \) = Number of years

Assuming an 8% cost of capital (discount rate) and 3% cost inflation, distribution deferral of six years for a $10 million substation would be valued at $2.5 million – PV = $10 million*1.03^6 / (1+.08)^6 = $7.5 million.
Bundling Services: How To Do it Optimally

Key Lesson: A valuation tool that co-optimizes benefits is required to define technically achievable benefits.

- Multi-dimensional co-optimization procedures required to ensure no double counting of benefits
 - ESSs are energy limited and cannot serve all services simultaneously
 - By using energy in one hour, less is available in the next hour
 - Energy storage valuation tools are required
Example Energy Storage Projects

1. Portland General Electric – Salem Smart Power Center
(1) Portland General Electric (PGE) Salem Smart Power Center (SSPC)

- Developed as an R&D project under the Pacific Northwest Smart Grid Demo as part of the American Recovery and Reinvestment Act of 2009
- The U.S. Department of Energy (DOE) provided half of the funding
- 5 MW – 1.25 MWh lithium-ion battery system built and managed by PGE

Potential energy storage benefits:
- Energy arbitrage
- Participation in the Western Energy Imbalance Market (EIM)
- Demand response
- Regulation up and down
- Primary frequency response
- Spin reserve
- Non-spin reserve
- Volt-VAR control
- Conservation voltage reduction
Optimal Scaling of the SPCC

- Evaluated individually the total 20-year value of SSPC operations exceeds $7.5 million in PV terms. When co-optimized, revenue falls to $5.8 million.

- At an energy to power ratio of 0.25, the SSPC is not well suited to engage in most energy-intensive applications, such as arbitrage and ancillary services, so revenue is lost during the co-optimization process.

- By upsizing the energy storage capacity to 10 MWh, the return on investment ratio yields a positive result at 1.24.
Optimal Microgrid Scale Required to Achieve Energy Security and Operational Goals:
Gen Set – 1,150 kW
PV – 1,224 kW
Energy storage – 408 kW / 510 kWh
Importance of Operational Knowledge in Defining Value for Energy Storage and Capturing it in Real Time

• Results
 • Flow battery power and energy capacity ratings can be confusing; 1 MW / 3.2 MWh battery provides ~ 2 MWh of energy when discharged at 1 MW
 • Battery performance, measured in round-trip efficiency (RTE) varies based on power output level, state of charge (SOC) operating range, and temperature
 • Li-ion batteries provide RTEs in the 70-87% (83-91% w/o aux) for C/6 to C/2 cycling range; flow battery RTEs in the 58-65% range (66-75%) for C/9 to C/3 cycling

• Non-linear Performance Modeling
 • Model allows estimation of SOC during operation taking into account operating mode, power, SOC, and temperature
 • Model has been validated with data
 • Actual battery performance can be anticipated, thus providing a high degree of flexibility to the BESS owner/operator
 • Self-learning model applicable to energy type of storage system

• PNNL Building a Battery State of Health Model using CEF Data
Energy Storage Control Algorithms

- Development of control strategies
 - Outline control strategies
 - Develop detailed design of control functions and reporting
 - Simulation/implementation of control functions.

- Optimization Performance Enhancement Tool (OPET): Tool for evaluating commercial energy storage controllers operating at utility sites. OPET goals:
 - Enhance learning of the inputs for consideration in developing storage control strategies that could achieve targeted economic values in real-world situations
 - Enhance performance by finding logic errors in control strategies
 - Evaluate impacts of forecast error on control strategies.

Key Lesson: Development of control strategies is required to obtain value in real-time. We should not compete in developing real-time control systems; rather, we should propel the industry forward through development of advanced algorithms and OPET.
What We Have Learned – Numerous Factors Determine an Energy Storage System’s Value Proposition

Siting/Sizing Energy Storage

Ability to aid in the siting of energy storage systems by capturing/measuring location-specific benefits

Broad Set of Use Cases

Measure benefits associated with bulk energy, transmission-level, ancillary service, distribution-level, and customer benefits at sub-hourly level

Regional Variation

Differentiate benefits by region and market structures/rules

Utility Structure

Define benefits for different types of utilities (e.g., PUDs, co-ops, large utilities operating in organized markets, and vertically integrated investor-owned utilities operating in regulated markets)

Battery Characteristics

Accurately characterize battery performance, including round trip efficiency rates across varying states of charge and battery degradation caused by cycling.
Acknowledgments

Dr. Imre Gyuk, DOE – Office of Electricity Delivery and Energy Reliability

Mission – to ensure a resilient, reliable, and flexible electricity system through research, partnerships, facilitation, modeling and analytics, and emergency preparedness.

https://www.energy.gov/oe/activities/technology-development/energy-storage
Q/A and Further Information

Patrick Balducci
PNNL
Patrick.balducci@pnnl.gov
(503) 679-7316

https://energystorage.pnnl.gov/